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A quantitative Korovkin theorem for random functions with compact convex
parameter spaces is established. © 1990 Academic Press, Inc.

1. INTRODUCTION

Consider the problem of approximating a real-valued continuous
function defined on a compact interval [a, b] c R The efficiency of a given
sequence fn of approximations can be expressed by means of

II f - fnll = sup If(t) - fn(t)I·
IE [a,b]

If fn = Tnf emerges from a monotone linear transformation Tn: C[a, b] -+

C[a, b], then a celebrated theorem of Korovkin states that the relation

lim Ilf - Tnfll = 0

holds for arbitrary f E C[a, b] provided this relation has been verified for
the three test functions f(t) = 1, f(t) = t, and f(t) = t2

• Moreover, there
exist quantitative versions of this theorem. In the literature, numerous
generalizations and connections with related topics have been established.
See, e.g., Berens and Lorentz [3], Censor [5], DeVore [6], Donner [7],
Gonska [8], Mond and Vasudevan [10], Nishishiraho [11], Roth [12],
Sablonniere [13], Scheffold [14], Schempp [15], and Wolff [18]. Results
relevant in stochastics were given by Anastassiou [1,2] and Hahn [9].
The quantitative results discussed so far usually deal with "sure" or "deter
ministic" mappings, i.e., the value f(t) is uniquely determined by the argu
ment t. However, any approximation problem concerning sure functions
can be posed equally well for "random" functions, and many applications,
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such as stochastic simulation, exclusively depend on random functions. For
example, consider the problem of constructing the random curve of a
moving particle undergoing molecular bombardment in a liquid assuming
a finite number of positions have been observed.

If a random function (or stochastic process) X(r, (iJ), tE [a, b], wEQ, is
to be approximated by monotone transformations T" then the maximal
error in the qth mean

liX~TIlXII= sup (EIX(t,w)-(TIlX)(t,wll")lq
!E [a,b]

sup (r [X(t, w) - (TIlX)(t, (j))1 q P(dw) \) 1 "

!E[a,b] 'Q

with respect to the underlying probability space (Q, d, P) shows the
effectiveness of Tn'

In order to prove stochastic analogues of the above Korovkin theorem
it turns out that monotonicity alone is not sufficient. Under mild additional
assumptions, a qualitative theorem can be found in [16J; for processes
with parameter sets K = [a, b] a quantitative version for q = 2 is given in
[17] which makes use of the classical Korovkin test family. It is the pur
pose of this paper to discuss the multivariate case: XU, w) is a stochastic
process with a convex compact parameter set K, q ~ 1 is arbitrary, and
the test family is expressed in terms of a given set of continuous linear
functionals.

2. BASIC DEFINITIONS

(Q, d, P) denotes a fixed probability space and L q(Q, d, Pi, q ~ i, 15

the set of all real-valued random variables with finite qth moments, i.e., the
set of all (Q, d) - (~, d8)-measurable mappings Z = Z(w) with

IIZ(w)ll q = (E IZ(wW(q = (r IZ(wW P(dwlY q< x,
,'Q /

where fJB is the a-field of Borel subsets of ~. K stands for a compact convex
subset of a real normed vector space V, and 1= {I'l, ..., I'm}, m~ 1, is a
fixed set of bounded linear functionals on V. 1 is assumed to be separating:
given v, II' E V with v#- H' one can find a functional,' E 1 satisfying
;'(v) #-}'(1I').

X = X( t, w) always denotes a stochastic process with index set K and real
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state space (IR, go). Sums, etc., of stochastic processes are to be understood
pointwise, and the natural ordering in IR induces the canonical ordering

iff X(t, OJ):::; Y(t, OJ) for each t E K.

(Passing to equivalence classes, processes which coincide with probability
one for each fixed t E K will not be distinguished between.) The vector
lattice of processes with bounded qth moments is defined to be

Ba(K) = {X: sup IIX(t, OJ )11 q < CfJ }
(EK

and becomes a: normed vector lattice by means of the norm

IIXII =sup IIX(t, OJ)ll q.
(EK

The space

Ca(K) = C(K, U(Q,.9I, P))

of L q-continuous processes is a linear sublattice of BdK), and the corre
sponding spaces

B(K) = {f: sup If(t)1 < <CfJ }
(EK

and

C(K) = C(K, IR)

of "ordinary" real-valued functions can be embedded if we identify a
function f(t) with the degenerate process Xit, OJ) = f(t), t E K, OJ E Q. The
nonrandom theory about quantitative Korovkin theorems is obtained if a
trivial probability space is considered which contains a single element only.
(Then

CdK)=C(K)

holds true.)
Given a process X E Ba(K), the mean value function EX and the norm

function XII are defined according to

(EX)(t) = E(X(t, OJ)) = faX(t, OJ) P(dOJ)

and



KOROVKIN THEOREM FOR RANDOM FUNCTIONS 7'7
Ii

Smoothness of a process X E Ba(K) with respect to the system r is
expressed by the stochastic modulus of continuity

1]( X; r; 8) = sup { II X( t I' w) - X( t2' w) \1 </: iI' t2 E' K,

nl I
L (}'i(ttl-)'i(t2»)2~821'
i~ 1 )

where 8 is nonnegative.
Some properties of processes X E Ba(K) are summarized in the following

lemma.

LEMMA 2.1. Assume X E BQ(K).

(i) The mean value function EX and the norm function XII are

elements of B( K).

tii ) II' X lies in Ca( K) then EX and XII are elements of C( K).

(iii) The stochastic modulus of continuity satisfies

I](X; r; rJ. ·8) ~ (1 + a) ·IJ(X; r; 8)

for each ex > 0 and 8 ~ O.

(iv) XECQ(K) implieslim~_o+I1(X;r;(j)=O.

3. MONOTONE OPERATORS FROM CQ(K) INTO Ba(K)

DEFINITION 3.1. A bounded linear mapping T: CalK) --+ BdK) is called
monotone if X~ 0 implies TX~ 0 for each X E CQ(K).

As mentioned before, monotonicity alone does not guarantee stochastic
analogues of quantitative Korovkin theorems.

First of all, it is required that application of the operators T and E can
be interchanged.

DEFINITION 3.2. A mapping T: CQ(K) --+ BQ(K) IS named to be
E-commutative provided

E(TX) = T(EX)

is satisfied for each X E CQ(K).

A second condition states that images of the most "simple" random func
tions are not "too complicated". The most simple random functions can be
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described as follows: if A Ed is a given event and.if WE A occurs (with
probability P(A)), then the random function-being independent from
t E K-is equal to one; if W If A occurs (with probability 1- P(A)) then the
random function vanishes identically. Hence for each event A Ed the
"simple" process 5 A is defined to be

if WEA

if W If A.

Stochastic simplicity of an operator T states that SA is always deformed by
means of a real-valued function aT'

DEFINITION 3.3. A mapping T: CQ(K) --. BQ(K) is called stochastically
simple if there exists a real-valued function aT: K --. IR such that

holds true for each event A Ed.

Note that in the nonrandom case any mapping is E-commutative and
any mapping leaving the vanishing function 50 == 0 invariant is stochasti
cally simple.

The additional conditions formulated in the above definitions are rather
mild and may be verified immediately for operators which are defined by
summation or integration, such as

n

(TX)(t,w)= I Dk(t)·X(tbW),
k~l

where Dk are given functions on K and t k E K are fixed knots. See also
[ 16].

The mean value operator EX is not stochastically simple.

LEMMA 3.4. (i) If Tis E-commutative then T maps the subspace C(K)
into B(K).

(ii) Assume T to be monotone, E-commutative, and stochastically
simple. If Z(w) is a random variable with IIZ(w)lI q <w and fEC(K) a
continuous fimction, then the image of the process

fz(t, w) = f(t)· Z(w)

is given by

(Tfz)(t, w) = (Tf)(t)· Z(w).
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Proof (i) fEC(K) implies Tf=T(Ef)=E(Tf)EB(K).

(ii) If Z(w)= 1A (w), AEd, is an indicator the relation

glVes

Therefore, (Tfl,)(t, w) = 0 if w ¢: A. Since A was arbitrary, the equation

implies

(Tfl,)(t, w) = (Tf)(l)· 1A(W),

79

(iii) The assertion for arbitrary random variables Z(w) follows
from (ii) by the choice of a sequence Z,,((u) of primitive variables with
limti~U:; IIZ(w)-ZIl(w)llq=O, I

A main tool in proving quantitative Korovkin theorems is the inequality
ITfl :(; T If I for f E elK). Being trivial in the nonrandom case, the
stochastic analogue (TX)II:(; T(X11 ) cannot be verified directly since we
have to deal with the L q-norm rather than with the absolute value induced
by the given ordering. First, an auxiliary result is required for integrals on
compact spaces K. (Convexity is not needed here.)

LEMMA 3.5. Let (K, f. Il) be a measure space where K is a compact
topological Hausdorff space, f the (I-field of Borel subsets of K. and i-i a
finite measure. Then there is a bounded linear operator

with

cPU1,) = 1 4 (w)· r fit) /l(dt)
'K

for each continuous function f E C( K) and each event A E c?i. !vIoreoper, ([j is
unique and satisfies

IlcP(X)ll q:(; r X11(t)'p(dt)
'K
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for each process X E CQ( K). In particular,

IlcPll =1l(K).

Proof (i) Given XE CQ(K) there exist random variables Zk(W),
II Z k{W) II q < O'J, and functions fk( t) E C(K), 1:;;:; k :;;:; n, such that

for any given e > O. (See Bourbaki [4].) Passing to indicators one finds
that the linear subspace

DQ(K) = { Y E CQ(K): Y(t, w) = k~ I 1AJw)· fk(t), fk E C(K),

A k Ed,Ak nA,=0fork=l=l, k~l Ak=QfOrSOmenEN}

is dense in Cg{K).

(ii) If Y lies in DQ(K) having the above representation set then

CP(Y)= f 1Ak(W)·f fk(t)ll(dt).
k~l K

It may be checked that cP is a well defined linear mapping from Dg{K) into
L q(Q, d, P) with

cP(fl,) = cP(f(t) . lAw)) = 1A (w)· Jf(t) Il(dt).
K

(iii) If g l' ... , gIE C(K) are fixed functions, lEN, then for each e > 0
there exist points t 1, ... , (~f E K and subsets K 1 , ... , K MC K, MEN, with the
following properties: the sets K", are pairwise disjoint elements of % with
L~;~ I K", = K satisfying

I
, M It g;(t) Il(dt) - "'~ I gi(t",) 'Il(Km ) :;;:; e

for each i = 1, ..., I. (For if e > 0 is given then-due to the compactness of
K-one can find points t 1 , ... , tMEK and open sets 01' ..., OM such that K
is covered by U~;~l Om, Om contains tm, 1 :;;:;m:;;:;M, and
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for each tEO m and i=l, ...,I. Putting K!=Ol and K",=O",-U':'~~il 0/
for m ): 2 we get

I

. M IJK gM) p(dt) - 11~ 1 g;U",) /1(K",) I
.\1 ,

:( L j Ig;(t)-g;(t",)1 !l(dt):(E.)
m=l Km

(iv) Hold an element YEDa(K) fixed with

"
Y(t, w) = L 14Jw) ·Ik(t).

k~1

Suppose an arbitrary 8> 0 is given.
By Lemma 2.1, Y11 is continuous on K. Applying the assertion of part

(iii) on the functions II' ... ,f" and Y11 we obtain

M

= L IIY(t""w)llq·p(Km )+£
lH= 1

:( I" Y11(t) p(dt) + 28.
JK

This implies the inequality

Hence C/> is bounded with norm II C/> II = p(K) since the constant function
i'oU) == 1 yields

II C/>( ro)11 q = ILi'oU) p(dt) i= p(KI . II }'oll·
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(v) On condition that an element XE CQ(K) IS gIven, choose a
sequence YnEDQ(K) with limn_a: IIX- Ynll =0 and set

n --+ 'X.J

where the limit is to be understood in the L q-sense. Then cP is the desired
operator on CQ(K), and cP is uniquely determined by the condition

because DQ(K) is dense in Cg(K). I
Formally, CP(X) may be viewed as a kind of stochastic L q-integral; in the
special case K = [a, bJ c IR and q = 2 the operator CP(X) coincides with the
ordinary stochastic Riemann integral.

LEMMA 3.6. Let T: CQ(K) -'t BQ(K) be monotone, E-commutative, and
stochastically simple. Then

is valid for each X E Cg(K).

Proof Hold t E K fixed. Define the real functional qJ t on C( K) according
to

qJt(f) = (Tf)(t).

qJ t is bounded, linear, and monotone. By the Riesz representation theorem
one can conclude

for each f E C(K), where Ilt is a finite measure defined on the o--field f of
the Borel subsets of K.

If we set

then CPt is a bounded linear operator from CQ(K) into Lq(Q,d,P). By
Lemma 3.4, CPt satisfies
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Therefore, application of Lemma 3.5 yields

(TX)IIU)= II(TX)(t, w)II"

= IltP,(X)ll q ~LX11(S) f1,(dsl

= qJ ,( XII) = (T( X: I))( r). I

83

Apart from Korovkin theory, Lemma 3.6 might also serve as a source of
various inequalities for monotone operators by specialization of the under
lying probability space (Q, d, Pl. For example, there is the following
expressive interpretation: assume II, ... , In to be continuous functions on
the real interval [a, b] and let

f(t):= (fl(t), ···,fn(t)), tE [a, b]

be a path describing the motion of a particle. Given n nonnegative r.umbers
Pk with LZ ~ 1 Pk = 1, then

describes the weighted distance of the particle from the origin with respect
to q?d and the weights Pk' Particularly, PI=P2= '" =Pn=I1- 1 and
q = 2 yield the Euclidean distance (up to the constant term /1-1

1
2). Consider

now a monotone deformation of the path due to

(T f)( t) := (( TIl )( t), ..., (lJ,,)( t) ).

On condition that a discrete probability space Q={wI ....,wn} vvi~h

probabilities P{ Wk} = Pk is chosen. application of Lemma 3.6 on the
process

n

X(t,w)= L l:wk:(w)·j~(t)
k~l

gives

(pTf)(t) ~ (Tpf)(I),

i.e., the distance of the particle tracing out the transformed curve is always
bounded by the transformation of the original distance. Similarly, more
complicated "distances" can be treated if more complicated probability
spaces are discussed.
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4. THE RATE OF CONVERGENCE

Theorem 4.1 establishes an upper bound for the approximation error
IIX- TXII. Being bounded linear functionals on the space V::::J K, the
elements of the system r= h'I' ..., I'm} may also be viewed as elements of
C(K). In the sequel the following abbreviations are used:

Yo(t) = 1, t E K

and

for each toEK and 1~i~m.

THEOREM 4.1. Assume that T: CQ(K) ~ BQ(K) is monotone, E-commuta
tive, and stochastically simple. Given 15 > 0, each process X E CQ( K) satisfies

IIX-TXII

~ IIXII ·111'0 - TYol1 + 11(X; r; 15)· (II TYol1 + 15-
2

. ~~~ it! T}'i,t(t)).

Proof Hold toEK fixed. Any tEK with L7~1 (i'lt)-YltoW>15 2

fulfills

IIX(t, w) - X(£o, w )11 q

( (

m )1~)
~11(X;r;15)' 1+15- 1

• i~1 (Yi(t)-Yi(tO))2

~1J(X; r; 15)'( 1 +15-
2

• itl (/'iCt)-Yi(tO))2}

Since the last bound for IIX(t, w) - X(£o, w )11 q applies equally well for t E K
with L;n~ 1 (I'lt) - Yi( to))2 ~ 15 2 we can conclude that the process

Y,o(t, W) = X(t, W) - X(tO' W) . YO(t)

satisfies

Because T is monotone, we obtain
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This is an inequality between two functions, i.e., the inequality holds :or
arbitrary arguments. If we choose the argument t = [0' then Lemma 3.4 and
the definition of Y'o(t, w) yield

to was arbitrary; consequently, taking the sup-norm on both sides implies

By Lemma 3.4, Tr'o - "/0 lies in E(K). Thus

and the assertion follows from

IITX-XII ~ IIX· T)'o-XII + liTX -X· Ticll· I

COROLLARY 4.2, Let Ttl be a sequence of monotone, E-commutative, and
stochastically simple operators. If b" is a sequence of positive real numbers
with

III

sup L T"I'i.t(t)~,'3·b;'
fEK i= I

for some constant f3;:: 0 then

is valid for each process X E Cd K). Particularly, [he conditions

1l- X.

and

lim II)'; - T,,(}'7lll = 0,
12 _ et:
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already imply

for each process XE CQ(K).
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lim IIX- T"XII = 0

Given a sequence of monotone operators being used to approximate a
stochastic process X we must therefore check for E-commutativity and
stochastic simplicity; usually, this would not cause difficulties since many
operators are defined by means of summation or integration, and such
operators are automatically E-commutative and stochastically simple.

Finally, we have to analyze the stochastic modulus of continuity
1J(X; T; b) in order to describe the asymptotic behaviour. By definition of
~7(X; T; b) this can be done by considering the covariance structure of X
with respect to q. For example, assume q = 2, let K be a subset of the
m-dimensional Euclidean space, and consider the canonical system
T = {}' l' ... , Ym} which consists of the projections

}';(t)=r;,

If 11·11 £ stands for the Euclidean norm then 1J(X; T; b) becomes

11(X; T; b) = sup (fX(tl, t 2))1;2,
tl, t2EK

11(1-(211£,,;6

where f x(t1, t2) can be expressed in terms of the mean value function
(EX)(t), the function of variances (Var X)(t), and the covariance function
(Cov X)( t l' t2) according to

fx(t 1, t2) = ((EX)(t 1) - (EX)(t2))2 + (Var X)(t1)

+ (Var X)(t 2 )-2(Cov X)(tl, t 2 ).

Remark. The assertions of Theorem 4.1 and Corollary 4.2 remain valid
mutatis mutandis if the space U(Q, d, P) and the norm II ·ll q are replaced
by a vector sublattice L c IRQ and a lattice semi-norm p on L, where L
contains the constant function Zo(w)= 1, wEQ, and p satisfies p(Zo»O.
Since the mean value function may be undefined, and indicators may not
be included in L, the hypothesis that Tis E-commutative and stochastically
simple must be interpreted as:

T maps C(K) into B(K) and satisfies

T(f ·Z) = (Tf). Z for each Z ELand fE C(K).
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